Pearson
 Edexcel

Mark Scheme (Results)

January 2022

Pearson Edexcel International GCSE
In Chemistry (4CH1) Paper 1C and Science
(Double Award) (4SD0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question Paper Log Number P70701A
Publications Code 4CH1_1C_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number		Answer	Notes	Marks
(a) (i)	chromatography		1	
	(ii)	fractional distillation	simple distillation	

Question number	Answer	Notes	Marks
2 (a) (i) (ii) (iii)	M1 oxygen / air M2 water (hydrated) iron(III) oxide C C is the correct answer because rusting involves the oxidation of iron. A is not the correct answer because the rusting of iron is not combustion. B is not the correct answer because the rusting of iron is not neutralisation. D is not the correct answer because the rusting of iron is not thermal decomposition.	REJECT (hydrated) iron (II) oxide	2
(b) (i) (ii) (iii)	galvanising M1 zinc is more reactive (than iron) M2 zinc reacts / oxidises / corrodes before / instead of iron Any two from: painting plastic coating oiling / greasing chromium plating sacrificial protection cathodic protection	ALLOW galvanisation IGNORE sacrificial protection ALLOW zinc is higher in the reactivity series (than iron) REJECT references to zinc rusting ALLOW powder coating	1 2 2
Total for question = 9 marks			

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
4 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
Any one from: \\
to increase the rate of reaction \\
to give the particles enough energy to react \\
because Ar does not (readily) gain / lose / share electrons \\
copper(II) oxide
\end{tabular} \& \begin{tabular}{l}
ALLOW because copper does not react with oxygen when copper is cold \\
ALLOW so that copper will react with oxygen \\
ACCEPT argon has a full outer shell / valence shell of electrons \\
ALLOW copper oxide REJECT copper(I) oxide
\end{tabular} \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
results are the same (at the end) \\
\(M 1\) volume oxygen \(=20 \mathrm{~cm}^{3}\) \\
M2 total volume \(=253 \mathrm{~cm}^{3}\)
\[
\text { M3 }(20 \div 253) \times 100=7.9 \%
\] \\
Any one from: \\
there is a leak in the apparatus \\
temperature was not the same for all readings \\
the apparatus was not left to cool (to room temperature)
\end{tabular} \& \begin{tabular}{l}
ALLOW results stop decreasing \\
ALLOW correct evaluation from M1 and M2 \\
ALLOW any number of significant figures REJECT incorrect rounding \\
Correct answer of 7.9\% with or without working scores 3 \\
IGNORE not all oxygen reacted
\end{tabular} \& 1
3

1

\hline
\end{tabular}

Question number	Answer	Notes	Marks
6 (a)	Any three from: M1 sodium (atom) loses electron(s) M2 oxygen (atom) gains electron(s) M3 sodium loses 1 electron AND oxygen gains 2 electrons OR M3 (both atoms become ions with configuration) 2.8	any mention of sharing of electrons scores 0	3
(b)	62		1
(c)	Any two from: M1 (sodium oxide has) ions / (giant) ionic structure M2 ions / electrons cannot flow / move M3 no delocalised electrons		2
(d)	M1 flame test M2 yellow colour	ALLOW any description of a flame test ALLOW orange or yellow-orange M2 dep on M1 or mention of flame	2
(e)	$2 \mathrm{Na}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}+\mathrm{Na}_{2} \mathrm{O}_{2}$		1
Total for question $=9$ marks			

Question number	Answer	Notes	Marks
7 (a)	C C is the correct answer because a precipitate of calcium sulfate will form in tube 1 , no precipitate will form in tube 2 as both products are soluble in water and a precipitate of copper(II) carbonate will form in tube 3. A, B and D are not the correct answers as no precipitate will form in tube 2.		1
(b) (i) (b) (ii)	white		1
	Any five from:		5
	M1 filter M2 heat/boil (the solution)		
	M3 to evaporate some of the water	ALLOW until crystals form on the end of a glass rod ALLOW until crystals first start to form ALLOW until the solution is saturated	
	M4 leave / cool (to crystallise)	M4 dep on M2	
	M5 pour off excess liquid OR filter (to obtain crystals)	M5 dep on crystals having been formed	
		IGNORE references to washing	
	M6 suitable method of drying the crystals	e.g. place in (warm) oven / leave to dry (in warm place) / use filter paper / kitchen towel / / desiccator	
		If solution heated to dryness or left to evaporate all of the water only M1 and M2 can be awarded.	
		If method produces silver chloride only M1 and M6 can be awarded	
(iii)	any one from:		1

$\left.$| | to make sure the silver nitrate and sodium chloride
 fully reacted | ALLOW so all the
 reactants react OR so
 nothing left unreacted
 OR so neither reagent is
 in excess |
| :--- | :--- | :--- |
| to make sure the products only contained silver | | |
| chloride and sodium nitrate | | |
| to ensure the highest possible yield | | |\quad| ALLOW to make sure |
| :--- |
| the sodium nitrate |
| (crystals) would be pure |
| ALLOW If either solution |
| were in excess, it would |
| contaminate the sodium |
| nitrate OWTTE | \right\rvert\,

| | landfill sites are getting full
 toxic / greenhouse gases are produced when burned | |
| :--- | :--- | :--- | :--- |
| Total for question $=15$ marks | | |

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 9 (a) \& \begin{tabular}{l}
M1 to prevent acid splashing out OR so only (carbon dioxide) gas leaves the flask \\
M2 so the decrease in mass is close to the actual value OR so that the decrease in mass is only due to the gas
\end{tabular} \& IGNORE solid leaving the flask REJECT prevents gas escaping \& 2 \\
\hline (b) \& \[
\begin{aligned}
\& \mathrm{M} 1 \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \\
\& \mathrm{M} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
\] \& \& 2 \\
\hline \begin{tabular}{l}
(c) (i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
the hydrochloric acid has all reacted \\
mass stays the same / stops decreasing \\
M1 0.98 \\
M2 \((0.98 \div 44)=0.022\) \\
M1 tangent shown on graph \\
M2 method of calculating gradient (change in \(y \div\) change in \(x\)) \\
M3 rate of reaction in g/s
\end{tabular} \& \begin{tabular}{l}
ALLOW effervescence / fizzing stops ALLOW the curve levels off \\
ALLOW any number of significant figures REJECT incorrect rounding ALLOW M1 \(\div 44\) \\
Correct answer of 0.022 moles with or without working scores 2 marks \\
ALLOW ECF from M2 \\
Answer of 0.005-0.006 with a tangent shown on the graph scores 3 with or without other working.
\end{tabular} \& 1
1

2

3

\hline
\end{tabular}

		Answer of 0.015g/s (the average rate of reaction for the first 60s scores $1)$			
(d) (i)	M1 the rate of reaction increases as the percentage concentration increases M2 the rate of reaction is (directly) proportional to the percentage concentration	M2 subsumes M1		\quad	2
:---					
(ii)					

Question number	Answer	Notes	Marks
10 (a) (i) (ii)	M1 6 bonding electrons M2 2 non-bonding electrons on each atom M1 shared pair(s) of electrons M2 attracted to (two) nuclei	ALLOW dots, crosses or any combination. M2 dep on M1 REJECT nucleus. Must be plural for M2. M2 dep on mention of electrons in M1	2
(b) (i) (ii)	diamond Any four from: M1 graphite is giant covalent M2 (in melting graphite) covalent bonds are broken M3 (C_{60}) (simple) molecular structure M4 (in melting C_{60}) intermolecular forces (of attraction) are overcome M5 more energy is needed to break covalent bonds (in graphite) than intermolecular forces (in C_{60})	ALLOW giant structure if $M 2$ is scored REJECT molecules of graphite ALLOW description of covalent bonds ALLOW molecules of C_{60} ALLOW breaking bonds in C_{60} if intermolecular forces clearly mentioned M4 subsumes M3 Mention of intermolecular forces in graphite no M2 or M5	1 4

	Mention of breaking covalent bonds in C 60 n4 or M5

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \(\begin{array}{lll}11 \& \text { (a) } \& \text { (i) } \\ \& \& \\ \& \& \\ \& \& \\ \& \& \\ \& \& \\ \& \& \\ \& \& \\ \& \end{array}\) \& \begin{tabular}{l}
M1 add anhydrous copper sulfate \\
M2 turns (from white) to blue \\
M1 measure the boiling point / freezing point \\
M2 \(100^{\circ} \mathrm{C} / 0^{\circ} \mathrm{C}\)
\end{tabular} \& \begin{tabular}{l}
ALLOW add white copper sulfate \\
M2 dep on copper sulfate in M1 \\
ALLOW \\
M1 add anhydrous / blue cobalt chloride \\
M2 turns (from blue) to pink \\
M2 dep on cobalt chloride in M1 \\
ALLOW boil it or freeze it \\
Value must match property
\end{tabular} \& 2

2

\hline (b) \& | M1 mass of hydrated zinc sulfate $=54.46-41.64$ OR 12.82 g |
| :--- |
| M2 Moles of hydrated zinc sulfate $=12.82 \div 287$ OR 0.0447 |
| M3 Moles $\mathrm{H}_{2} \mathrm{O}=0.0447 \times 7$ OR 0.313 |
| M4 Mass $\mathrm{H}_{2} \mathrm{O}=5.63 \mathrm{~g}$ |
| M5 Volume $\mathrm{H}_{2} \mathrm{O} 5.6 \mathrm{~cm}^{3}$ | \& | ALLOW M1 $\div 287$ |
| :--- |
| ALLOW M2×7 |
| ALLOW M3×18 |
| Must be 1 dp |
| ALLOW M4 to 1dp |
| Correct answer of 5.6 cm^{3} to 1 dp with or without working scores 5 marks | \& 5

\hline | (c) (i) |
| :--- |
| (ii) | \& | 1.7 |
| :--- |
| M1 stand the measuring cylinder in a beaker of ice OR | \& | ALLOW 2 or more significant figures REJECT incorrect rounding |
| :--- |
| ALLOW any way of cooling the measuring | \& 2

\hline
\end{tabular}

	M1 replace the delivery tube with a (Liebig) condenser M2 less water / water vapour / steam lost	cylinder or delivery tube ALLOW add a condenser IGNORE add a stopper / bung ALLOW more water (vapour) / steam condenses ALLOW less water evaporates	
Total for question $=12$			

